
FERMILAB-PUB-10-396-T

Magnification as a Tool in Weak Lensing
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Weak lensing surveys exploit measurements of galaxy ellipticities. These measurements are subject
to errors which degrade the cosmological information that can be extracted from the surveys. Here
we propose a way of using the galaxy data themselves to calibrate the measurement errors. In
particular, the cosmic shear field, which causes the galaxies to appear elliptical, also changes their
sizes and fluxes. Information about the sizes and fluxes of the galaxies can be added to the shape
information to obtain more robust information about the cosmic shear field. The net result will be
tighter constraints on cosmological parameters such as those which describe dark energy.

PACS numbers:

Introduction. Weak gravitational lensing [1–3] has the
potential to probe some of the most outstanding prob-
lems in cosmology. Hidden in the pattern of the ellip-
ticities of background galaxies is information about the
cosmic shear field, which in turn depends on the large
scale properties of the universe, including the nature of
the dark energy [4, 5]. Among the systematic hurdles
that must be overcome in order to mine this information
is bias in the measurements of these ellipticities. Here
we focus on multiplicative bias [6–9], the fact that the
observed ellipticity of a galaxy is related to its true el-
lipticity via a multiplicative factor that is not necessarily
equal to one. When ellipticities are converted to conver-
gences (where κ is the convergence along the line of sight
to the background galaxies), this translates to

κobs(n̂, z) = bm(z)κtrue(n̂, z) (1)

where the assumption that the multiplicative bias bm de-
pends only on the redshift of the background probes fol-
lows the arguments of Refs. [6–9] that the angular depen-
dence leads only to smaller, higher-order corrections.

Here we propose a method of calibrating the multi-
plicative bias, exploiting the effect that weak lensing has
on the sizes and fluxes of the background galaxies. While
shapes are usually used to infer κ, sizes and fluxes are
also distorted. As such, these observables carry informa-
tion about the convergence field1 and can also be used
to improve cluster mass estimates [12]. We show here
that future surveys may be able to use this information
to calibrate the multiplicative bias, thereby enabling us
to capture more of the information contained in the cos-
mic shear field. For concreteness we focus mainly on two

1 The distortions in size and magnitude also introduce selection
bias [10, 11], which will bias cosmological results if not accounted
for properly.

upcoming lensing surveys: the Dark Energy Survey [13]
(DES) and the Large Synoptic Survey Telescope [14]
(LSST), both at a single redshift slice (so that bm is con-
stant).

The Impact of Lensing on Sizes and Fluxes. Weak
lensing increases the size of a given galaxy by a factor of
1 +κ and the flux by 1 + 2κ, corresponding to a decrease
in magnitude by 2.5 ln(1 + 2κ)/ ln(10). The average size
and flux of galaxies in a survey, however, are affected by
lensing in a more complex way due to the thresholds for
inclusion in the survey. Consider Fig. 1, which depicts the
size and i-magnitude distributions of galaxies observed in
the Hubble-GOODS survey [15] as they might appear in
DES behind a region with κ = 0.1. Cuts in size and
magnitude are depicted by the vertical lines and a mean
seeing of 0.9′′ has been added to the sizes. Although each
individual galaxy increases in size/magnitude, the mean
size/magnitude is also affected by the small/faint galaxies
that are promoted into the survey by lensing. Thus, the
change in the mean size/magnitude is not given by the
simple relationships above.

We quantify the effect of lensing of the mean sizes and
magnitudes by introducing coefficients gs, gm defined via

〈mobs
i 〉 ≡ m0 + gmκ

true
i [magnitude]

〈sobs
i 〉 ≡ s0(1 + gsκ

true
i ) [size]. (2)

Here m0 and s0 are the mean magnitude and size in the
entire galaxy sample, and the index i labels an angular
pixel in which there are many galaxies, all of which are
affected by the same convergence κtrue

i . Since s0 and m0

are obtained by averaging over all galaxies in the survey
(behind regions with both positive and negative κ), they
can be determined very accurately. The mean size and
magnitude of background galaxies in a pixel, therefore,
contain information about the cosmic shear field affecting
that pixel.

To extract this information from sizes and magnitudes,
we need to know the coefficients gm and gs. One hint
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FIG. 1: Distributions of the sizes (left panel) and the magnitudes (right panel) for a DES-like survey with (dashed) and without
(solid) lensing by a convergence κ = 0.1. Regions with positive κ will therefore have larger and brighter galaxies. Vertical lines
show the fiducial thresholds for the DES survey.

comes from the recent detection of lensing on the average
flux of SDSS quasars [16]. They found a value of gm =
−0.25 (−CS in their notation). Using the deep HST data,
we can simulate DES/LSST conditions and estimate the
coefficients. We take the unlensed sizes and magnitudes,
adopt a value of κ, generate a new set of simulated data
by m→ m− 2.5 ln(1 + 2κ)/ ln 10 and s→ s(1 + κ), and
then apply simulated seeing and cuts of sobs > 1.2′′ and
mobs < 24. The resulting means 〈mobs〉 and 〈sobs〉 then
determine the g’s via, e.g., gm = (〈mobs〉 −m0)/κ. We
find gm = −0.3 and gs = 0.25, fairly independently of
cuts and κ, so we use these values in the projections.

Estimating gm and gs from survey data is likely to be
more difficult. The standard estimate for gm, e.g., is

gm =

[
1− mcN(mc)∫mc

0
mN(m)dm

+
N(mc)∫mc

0
N(m)dm

]
5

ln 10
,

(3)
where N(m)dm is the number of galaxies in the magni-
tude interval m-m + dm and mc is the magnitude cut.
This formula though neglects the real world complexi-
ties introduced by multiple cuts (size and magnitude)
and the finite statistics in the magnitude bin used to es-
timate N(m). Instead, we may need to use data from
even deeper surveys to calibrate the g’s for the survey of
interest, just as have used used HST data here to esti-
mate the g’s for DES.

Reducing Multiplicative Bias. We now envision using
all three sets of observables (ellipiticites, sizes, and mag-
nitudes), each of which depends on κtrue, to constrain
the multiplicative bias, and therefore reduce the errors on
cosmological parameters. As an illustration, we consider
the case where there is only a single cosmological param-
eter, the amplitude of the power spectrum of the conver-
gence, Pκ. If we had no information about the bias bm,
then ellipticity measurements alone could not determine
the amplitude of the power spectrum, Pκ. Technically, if

the amplitude of the power spectrum were characterized
by a, with a = 1 being the true value, there would be a
complete degeneracy between a and bm, since

〈κobs
i κobs

j 〉 = b2m〈κtrue
i κtrue

j 〉+ δijσ
2
κ

= a2b2m

∫
d2l

(2π)2
Pκ(l)J0(lθij) + δijσ

2
κ

≡ a2b2mξκ(θij) + δijσ
2
κ (4)

where θij is the angular distance between the two pixels,
Pκ is the (assumed known) shape of the power spectrum
(Pκ = aPκ), and σκ is the rms of the ellipticities in the
absence of a signal, due to shape noise and measurement
errors. Observations of ellipticities then depend only on
the product abm, so there is a complete degeneracy be-
tween these two parameters.

The sizes and magnitudes contain information that
break this degeneracy. A simple way to exploit this infor-
mation is to consider the full set of two-point functions
of (convergence, size, and magnitude) for each pair of
pixels:

〈κobs
i (sobs

j − s0)〉 = a2bmgss0ξκ(θij), (5)

〈κobs
i (mobs

j −m0)〉 = a2bmgmξκ(θij), (6)

〈(sobs
i − s0)(sobs

j − s0)〉 = δijσ
2
s

[
1 + a2g2

sξκ(θ = 0)
]

+ a2g2
ss

2
0ξκ(θij), (7)

〈(sobs
i − s0)(mobs

j −m0)〉 = a2gmgss0ξκ(θij), (8)

〈(mobs
i −m0)(mobs

j −m0)〉 = δijσ
2
m + a2g2

mξκ(θij). (9)

The variances σ2
s and σ2

m include contributions from in-
trinsic scatter in sizes and magnitudes and also the mea-
surement errors expected in the survey. Here, we have
assumed that the intrinsic sizes and fluxes of galaxies are
uncorrelated with one another.

The data set will then contain 3N numbers: the aver-
age size, magnitude, and shear/convergence of all galax-
ies in a set of N pixels. To assess how powerful this
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Probe Mean Dispersion g Cut

Size (arcsec) 1.5 (0.9) 0.33 (0.266) 0.25 1.2 (0.7)

Magnitude 22.7 (24.4) 1.1 (1.26) -0.3 24 (26)

TABLE I: Assumed values for sizes and magnitudes of DES
and LSST. Values for the sizes and magnitudes of single galax-
ies for the DES survey, so the scatter in a single pixel contain-
ing M = 15 galaxies is σs = 0.33′′/

√
15 and σm = 1.1/

√
15.

Values in parentheses are those adopted for LSST, with
M = 100 assumed.

information will be, we construct the Fisher matrix. The
2× 2 Fisher matrix is

Fαβ =
1
2

Tr
[
C,αC

−1C,βC
−1
]
. (10)

where α, β run over the two parameters a and bm, the
trace is over all the 3N observables and C is their 3N ×
3N covariance matrix with elements given in Eqs. (4-9).

DES (LSST) will cover about 5, 000 (20, 000) sq. de-
grees, and we consider pixels of size ∆θ2 = 10 square
arcmin. The total number of pixels is then = 1.8 ×
106 (7.2 × 106). We focus only on the redshift range
z ∈ [0.9, 1.1] with an expected number of galaxies per
pixel of M = 15 (100). The parameters assumed for mag-
nitudes and sizes are summarized in Tab. I.

Fig. 2 shows the projected constraints from DES as-
suming that all the pixels are uncorrelated (so the Fisher
matrix is simply the one-pixel Fisher matrix times 1.8×
106). The figure shows that multiplicative bias in a single
redshift bin can be pinned down at the 5% level with the
aid of size and magnitude measurements. Also shown is
the projection for LSST. Here the requirements on the
bias will be more severe because the statistical power is
much higher [9], and indeed the extra information does
pin down multiplicative bias at the percent level.

The projected errors in Fig. 2 retain the degeneracy
between a and bm that afflicts the shear-only measure-
ments. This is an indication that the shear measure-
ments carry the most statistical weight. To confirm
this, consider the signal to noise of the shear measure-
ment. Taking the ratio of the two terms on the right
in Eq. (4) and weighting by the number of galaxies M
in a pixel leads to (S/N)shear '

√
Mξ/σ2

κ. For DES
(LSST) this is of order 0.1 (0.3). By contrast, a similar
estimate for the size measurement using Eq. (7) leads
to (S/N)size '

√
Mg2

ss
2
0ξ/σ

2
s , or 0.04 (0.07) for DES

(LSST). Although the dispersion in sizes is comparable to
shape noise, the signal is suppressed by a factor of gs. A
similar estimate for the magnitudes yields even smaller
signals. So the shear measurements dominate the con-
straints, and the utility of the size/magnitude measure-
ments is to break the degeneracy between the amplitude
of the clustering (a) and the multiplicative bias (bm).

We have neglected correlations between pixels. When

FIG. 2: Projected constraints on the multiplicative bias bm
and amplitude of the power spectrum a for two surveys. Outer
contour shows the projection for DES (5000 square degrees)
with 1.5 galaxies per square arcminute in the redshift range
[0.9, 1.1]. Inner contour shows projections for an LSST-like
survey with 10 galaxies per square arcminute in this redshift
range and 20,000 square degrees.

these are added in, the constraints will become tighter.
We have not computed the Fisher matrix including all
correlations, but we have studied how the constraints
with and without correlations compare for smaller fields
as the number of pixels increases . These studies suggest
that there is additional information in the correlations
which will further tighten the constraints on multiplica-
tive bias by at least 10%.

Conclusions. Weak lensing affects several observed
properties of galaxies: not only does it distort their
shapes, but it also alters their observed sizes and mag-
nitudes. We have demonstrated that these other dis-
tortions can turned into an asset: the lensing effect on
the average galaxy size and magnitude helps to constrain
multiplicative bias. The comprehensive way to determine
how successful these new observables will be at improving
cosmological constraints is to add them to the program
initiated by Bernstein [17], where the Fisher matrix for
all parameters (cosmological and nuisance) is determined
for a fixed set of measurements of κ and the density of
sources. Here we have estimated the improvement in
a simple setting where only the amplitude of the power
spectrum is unknown. This simple example suggests that
the added information is potentially useful and should be
incorporated into the more comprehensive program and
ultimately into the full analysis pipeline of upcoming sur-
veys.
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